

S200 OV CIRCUIT BREAKER

Product Environmental Profile

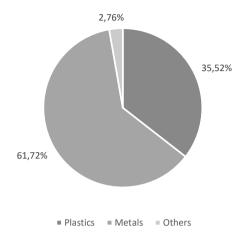
Environmental Product Declaration

Document in compliance with ISO 14025: 2010 "Environmental labels and declarations. Type III environmental declarations"

			CONTACT INFORMATION	CONTACT INFORMATION Carlota García Pleite <carlota.garciapleite@es.abb.com></carlota.garciapleite@es.abb.com>				
			Carlota García Pleite < carlota.garcí					
MANUFACTURING ADDRESS			WEBSITE					
ABB Industrial Solutions Sp. Z	o. o. Pilsuds	kiego 5, 57-300 Klodzko, Poland	https://global.abb/group/en	https://global.abb/group/en				
STATUS	TATUS SECURITY LEVEL			REV.	LANG.	PAGE		
proved Public		ABBG-00112-V01.01-EN	1	en	1/11			

ABB Purpose & Embedding Sustainability

ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.



General Information

S200 OV 10KA 2P C25 – 2CDS252202R0519
The EP series of minuature circuit breaker provides protection to the installations against overloads and short circuits. They have two different trip mechanisms: the thermal trip mechanism for protection against overloads and the electromagnetic trip mechanism for protection against short circuits.
Protect during 20 years the installation against overloads and short-circuits in circuit with assigned voltage 400V and rated current 25A.
S200 homogeneous family: 10kA breaking capacity OV char from 25 up to 63 A 2, 3 & 3+N Poles

Approved Public ABBG-00112-V01.01-EN 1 en 2/11
--

Constituent materials

Total weight of	241.7 ~
Reference product	241,7 g

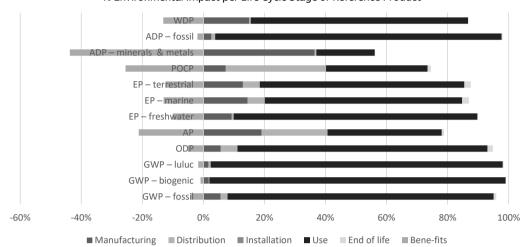
Plastics as % of weight		Metals as % of weight		Others as % of weight		
Name and CAS number	Weight-%	Name and CAS number	Weight-%	Name and CAS number	Weight-%	
PA6+PA66+GF	15,8	Steel	31,5	Cardboard	2,6	
PA6+20MF+GF	14,1	Copper	21,0	Paper	0,2	
PBT VO	2,4	19MnB4 Ep-Zn	5,2	-	-	
PC film	1,1	Stainless steel	3,4	-	-	
Other plastics	2,2	Other metals	0,6	-	-	

Total weight of the reference product and its packaging: 254,5 g (5,01% box and 0,19% paper)

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE			
Approved	Public	ABBG-00112-V01.01-EN	1	en	3/11			
© Copyright 2022 ABB. All rights reserved.								

Additional Environmental Information

Manufacturing	Includes the environmental impacts associated with extraction and processing of the raw materials used to produce the product and its pacakging, transport to the manufacturing site and assembly.
Distribution	Includes the transportation in its pacakging from the manufacturer's last logistic platform to the distributor.
Installation	Installation stage includes the installation of the products made manually and packaging.
Use	Energy consumption is calculated by following the PSR. The energy models used in this phase are the specific energy mixes based on ABB distribution. No maintenance is necessary. Reference product consumption over 20 years is 61,73 kWh
End of life	Includes its transportation from the installation site to the final end of life treatment site, and end of life treatment processes. A value of 1000 km transport by lorry is used for the transportation.
Benefits and loads beyond the system boundaries	Potential for reuse, recovery and/or recycling, expressed as net benefits and im-pacts



Environmental impacts

	Reference lifetime	20 years						
	Product category	Circuit Breaker	Circuit Breaker					
	Installation elements	Installation carried out manually. End of life of packaging. Load time: 50% of rated current in continuous operation (In). Use time rate: 30% of reference lifetime (RLT). Europe						
	Use scenario							
	Geographical representativeness							
	Technological representativeness	Materials and processes data are specific for the production o S200 OV 10KA 2P C25 – 2CDS252202R0519 and its family	Materials and processes data are specific for the production of S200 OV 10KA 2P C25 – 2CDS252202R0519 and its family					
	Software and database used	Simapro 9.3.0.3 and Ecoinvent v3.8						
	Energy model used							
•	Energy model used Manufacturing	Poland General Energy Renewable						
·		Poland General Energy Renewable Manually done. Europe						
	Manufacturing							
	Manufacturing Installation	Manually done. Europe						
	Manufacturing Installation Use	Manually done. Europe Belgium, Germany & Spain						
JS.	Manufacturing Installation Use	Manually done. Europe Belgium, Germany & Spain Recycling of product	PAGE					

Common base of mandatory indicators

% Environmental Impact per Life Cycle Stage of Reference Product

Environmental impact indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Instal- lation	Use	End of life	Bene fits
GWP-total	kg CO₂ ec	. 2,02E+01	1,17E+00	4,69E-01	3,54E-03	1,84E+01	1,68E-01	-8,36E-0
GWP-fossil	kg CO₂ ec	. 1,97E+01	1,16E+00	4,67E-01	3,53E-03	1,79E+01	1,68E-01	-8,31E-0
GWP-biogenic	kg CO₂ ec	. 5,21E-01	9,40E-03	1,11E-03	3,95E-06	5,10E-01	1,88E-04	-4,88E-0
GWP-luluc	kg CO₂ ec	. 3,95E-02	6,68E-04	2,98E-04	1,75E-06	3,85E-02	8,32E-05	-6,74E-0
GWP-fossil = Globa GWP-biogenic = Glo GWP-luluc = Global	obal Warming Po	tential biogenic						
OPD	kg CFC-11 eq.	1,71E-06	1,02E-07	9,81E-08	6,76E-10	1,47E-06	3,21E-08	-9,21E-0
OPD = Depletion po	otential of the st	ratospheric ozo	ne layer					
AP	H+ eq.	7,16E-02	2,30E-02	2,60E-02	1,78E-05	4,51E-02	8,45E-04	-2,55E-0
AP = Acidification p	ootential, Accum	ulated Exceedan	ice					
		9,45E-04	9,77E-05	6,47E-06	4,44E-08	8,39E-04	2,11E-06	-1,05E-0
EP-freshwater	kg P eq.	9,436-04	3,					
EP-freshwater EP-marine	kg P eq. kg N eq.	1,20E-02	2,00E-03	7,76E-04	6,38E-06	8,93E-03	3,03E-04	-1,80E-0
EP-marine EP-terrestrial	kg N eq. mol N eq.	1,20E-02 1,39E-01	2,00E-03 2,05E-02	8,64E-03	6,95E-05	1,06E-01	3,03E-04 3,30E-03	
EP-marine	kg N eq. mol N eq. itrophication potent	1,20E-02 1,39E-01 tential, fraction ial, fraction of ni ential, Accumula	2,00E-03 2,05E-02 of nutrients reaching	8,64E-03 ning freshwater er	6,95E-05 nd compartment	1,06E-01		
EP-marine EP-terrestrial EP-freshwater = Eu EP-marine = Eutrop	kg N eq. mol N eq. itrophication potent	1,20E-02 1,39E-01 tential, fraction ial, fraction of ni ential, Accumula	2,00E-03 2,05E-02 of nutrients reaching	8,64E-03 ning freshwater er	6,95E-05 nd compartment	1,06E-01		-1,96E-0
EP-marine EP-terrestrial EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut	kg N eq. mol N eq. strophication po- chication potents crophication pot kg NMVO- eq.	1,20E-02 1,39E-01 tential, fraction of nicential, Accumula 3,840E-02	2,00E-03 2,05E-02 of nutrients reaching ted Exceedance 6,280E-03	8,64E-03 ning freshwater er marine end comp	6,95E-05 nd compartment partment	1,06E-01	3,30E-03	-1,96E-0
EP-marine EP-terrestrial EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut	kg N eq. mol N eq. strophication po- chication potents crophication pot kg NMVO- eq.	1,20E-02 1,39E-01 tential, fraction of nicential, Accumula 3,840E-02	2,00E-03 2,05E-02 of nutrients reaching ted Exceedance 6,280E-03	8,64E-03 ning freshwater er marine end comp	6,95E-05 nd compartment partment	1,06E-01	3,30E-03 9,130E-04	-1,96E-0 -2,180E-0
EP-marine EP-terrestrial EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut POCP POCP = Formation ADP-minerals &	kg N eq. mol N eq. strophication potents trophication potents trophication potents kg NMVO eq. potential of trophication of trophication potential of trophication potential of trophication potential of trophication in the potential	1,20E-02 1,39E-01 tential, fraction of nial, fraction of niential, Accumula 3,840E-02	2,00E-03 2,05E-02 of nutrients reaching ted Exceedance 6,280E-03	8,64E-03 ning freshwater er marine end comp 2,810E-02	6,95E-05 and compartment partment 1,920E-06	1,06E-01 2,840E-02 2,45E-04	3,30E-03 9,130E-04	-1,96E-0 -2,180E-0 -5,59E-0
EP-marine EP-terrestrial EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut POCP POCP = Formation ADP-minerals & metals	kg N eq. mol N eq. strophication potential crophication potential crophication pot kg NMVO eq. potential of trop kg Sb eq. MJ	1,20E-02 1,39E-01 tential, fraction of niential, Accumula 3,840E-02 00-spheric ozone 7,19E-04 5,61E+02 pletion potentia	2,00E-03 2,05E-02 of nutrients reactivations reaching ted Exceedance 6,280E-03 4,66E-04 1,51E+01	8,64E-03 ning freshwater er marine end comp 2,810E-02 7,05E-06 6,92E+00	6,95E-05 and compartment partment 1,920E-06 1,78E-08	1,06E-01 2,840E-02 2,45E-04	3,30E-03 9,130E-04 8,46E-07	-1,96E-0 -2,180E-0 -5,59E-0
EP-marine EP-terrestrial EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut POCP POCP = Formation ADP-minerals & metals ADP-fossil ADP-minerals & me	kg N eq. mol N eq. strophication potential crophication potential crophication pot kg NMVO eq. potential of trop kg Sb eq. MJ	1,20E-02 1,39E-01 tential, fraction of nicential, Accumula 3,840E-02 00-spheric ozone 7,19E-04 5,61E+02 pletion potentia	2,00E-03 2,05E-02 of nutrients reactivations reaching ted Exceedance 6,280E-03 4,66E-04 1,51E+01	8,64E-03 ning freshwater er marine end comp 2,810E-02 7,05E-06 6,92E+00	6,95E-05 and compartment partment 1,920E-06 1,78E-08	2,840E-02 2,45E-04 5,36E+02	3,30E-03 9,130E-04 8,46E-07	-1,96E-0 -2,180E-0 -5,59E-0 -1,11E+0
EP-marine EP-terrestrial EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut POCP POCP = Formation ADP-minerals & metals ADP-fossil ADP-fossil = Abiotic	kg N eq. mol N eq. strophication pote trophication pote trophication pote kg NMVO eq. potential of trop kg Sb eq. MJ stals = Abiotic de c deple-tion for	1,20E-02 1,39E-01 tential, fraction of nicential, Accumula 3,840E-02 00-spheric ozone 7,19E-04 5,61E+02 pletion potential cossil resources 5,94E+00	2,00E-03 2,05E-02 of nutrients reaching ted Exceedance 6,280E-03 4,66E-04 1,51E+01 all for non-fossil repotential	8,64E-03 ning freshwater er marine end comp 2,810E-02 7,05E-06 6,92E+00 esources	6,95E-05 and compartment vartment 1,920E-06 1,78E-08 4,32E-02	2,840E-02 2,45E-04 5,36E+02	3,30E-03 9,130E-04 8,46E-07 2,05E+00	-1,96E-0 -2,180E-0 -5,59E-0 -1,11E+0
EP-marine EP-terrestrial EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut POCP POCP = Formation ADP-minerals & metals ADP-fossil ADP-minerals & me ADP-fossil = Abiotic WDP	kg N eq. mol N eq. strophication pote trophication pote trophication pote kg NMVO eq. potential of trop kg Sb eq. MJ stals = Abiotic de c deple-tion for m³ e depr sivation potential	1,20E-02 1,39E-01 tential, fraction of nicential, Accumula 3,840E-02 00-spheric ozone 7,19E-04 5,61E+02 pletion potential cossil resources 5,94E+00	2,00E-03 2,05E-02 of nutrients reaching ted Exceedance 6,280E-03 4,66E-04 1,51E+01 all for non-fossil repotential	8,64E-03 ning freshwater er marine end comp 2,810E-02 7,05E-06 6,92E+00 esources	6,95E-05 and compartment partment 1,920E-06 1,78E-08 4,32E-02 2,71E-04	2,840E-02 2,45E-04 5,36E+02	3,30E-03 9,130E-04 8,46E-07 2,05E+00	-1,96E-0. -2,180E-0 -5,59E-0 -1,11E+0

Common base of mandatory indicators

Inventory flows indicator - Resource use indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Instal- lation	Use	End of life	Bene- fits
PERE	МЈ	7,97E+01	2,12E+00	1,91E-01	9,91E-04	7,74E+01	4,71E-02	-1,28E+00
PERM	МЈ	2,23E-01	2,23E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	МЈ	7,99E+01	2,34E+00	1,91E-01	9,91E-04	7,74E+01	4,71E-02	-1,28E+00
PENRE	МЈ	5,58E+02	1,28E+01	6,92E+00	4,32E-02	5,36E+02	2,05E+00	-1,11E+01
PENRM	МЈ	2,36E+00	2,36E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	МЈ	5,61E+02	1,51E+01	6,92E+00	4,32E-02	5,36E+02	2,05E+00	-1,11E+01

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials

PERM = Use of renewable primary energy resources used as raw materials

PERT = Total Use of renewable primary energy resources

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials

PENRM = Use of non-renewable primary energy resources used as raw materials

PENRT = Total Use of non-renewable primary energy re-sources)

Inventory flows indicator – Indicators describing the use of secondary materials, water, and energy re-sources

Indicator	Unit	Total	Manu- facturing	Distri- bution	Instal- lation	Use	End of life	Bene- fits
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	МЈ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	МЈ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m³	2,03E-01	2,47E-02	1,28E-03	9,03E-06	1,77E-01	4,29E-04	-2,13E-02

SM = Use of secondary material

RSF = Use of renewable secondary fuels

NRSF = Use of non-renewable secondary fuels

FW = Use of net fresh water

Inventory flows indicator – Waste category indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Instal- lation	Use	End of life	Bene- fits
Hazardous waste disposed	kg	7,13E-04	2,89E-05	1,31E-04	1,22E-07	5,65E-04	5,82E-06	-9,85E-06
Non- hazardous waste disposed	kg	1,88E+00	2,57E-01	2,21E-01	2,08E-03	1,30E+00	9,89E-02	-1,71E-01
Radioactive waste disposed	kg	4,77E-03	2,07E-05	4,58E-05	2,82E-07	4,69E-03	1,34E-05	-1,44E-05

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	
Approved	Public	ABBG-00112-V01.01-EN	1	en	6/11	

© Copyright 2022 ABB. All rights reserved.

Common base of mandatory indicators

Inventory flows indicator - Output flow indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Instal- lation	Use	End of life	Bene- fits
Components for re- use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materials for recycling	kg	2,18E-01	1,93E-02	0,00E+00	0,00E+00	0,00E+00	1,99E-01	0,00E+00
Materials for energy recovery	kg	1,74E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,74E-02	0,00E+00
Exported energy	МЈ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

Inventory flow indicator - other indicators

Indicator	Unit	Total
Biogenic carbon content of the product	kg of C	0,00E+00
Biogenic carbon content of the associated packaging	kg of C	6,62E-03

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	
Approved	Public	ABBG-00112-V01.01-EN	1	en	7/11	
© Comprisht 2022 ADD All rights recogned						

Optional indicators

Environmental indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Instal- lation	Use	End of life	Bene- fits
Total use of primary energy during the life cycle	МЈ	6,39E+02	1,75E+01	7,11E+00	5,94E-03	6,14E+02	2,09E-01	-4,48E+01
Emissions of fine particles	inciden ce of diseas es	3,74E-07	1,02E-07	5,03E-08	1,79E-11	2,22E-07	6,28E-10	-3,18E-07
Ionizing radiation, human health	kBq U235 eq.	5,15E+00	2,19E-02	3,12E-02	2,43E-05	5,09E+00	8,53E-04	-6,34E-02
Ecotoxicity (fresh water)	CTUe	4,25E+02	1,62E+02	6,99E+00	2,30E-02	2,55E+02	8,10E-01	-7,46E+02
Human toxicity, car- cinogenic effects	CTUh	1,42E-08	5,66E-09	7,62E-10	7,33E-13	7,75E-09	2,58E-11	-1,70E-08
Human toxicity, non- carcinogenic effects	CTUh	4,82E-07	2,62E-07	8,98E-09	8,64E-12	2,10E-07	3,04E-10	-1,24E-06
Impact related to land use/soil quality	kg	1,20E+02	9,76E+00	3,29E+00	1,70E-03	1,07E+02	5,97E-02	-3,20E+01

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	
Approved	Public	ABBG-00112-V01.01-EN	1	en	8/11	
© Copyright 2022 ABB. All rights reserved.						

Extrapolation rules

For other products than the Reference product covered by this PEP, the environmental impacts for each phase of the lifecycle are obtained by multiplying the values of the Reference product by the following coefficients:

* if the coefficient is "1", the impacts of the phase of the life cycle are assimilated to the Reference product, meaning that the impacts are unchanged in comparison to the Reference product

Use phase extrapolation factors:

	Amperage (A)				
Type OV	25	32	40	50	63
2P	0,98	1,24	1,54	1,76	2,24
3P	1,47	1,86	2,32	2,64	3,36
3P + N	1,97	2,49	3,09	3,51	4,48

All the others phases extrapolation factors:

	Manufacturing	Distribution	Installation	Use	EoL
2P	1,00	1,00	1,00	1,00	1,00
3P	1,67	1,67	1,00	1,50	1,67
4P / 3P + N	2,05	2,05	1,00	2,00	2,05

Product description	Product code
S202-OV25	2CDS252202R0519
S202-OV32	2CDS252202R0529
S202-OV40	2CDS252202R0559
S202-OV50	2CDS252202R0579
S202-OV63	2CDS252202R0599
S203-OV25	2CDS253202R0519
S203-OV32	2CDS253202R0529
S203-OV40	2CDS253202R0559
S203-OV50	2CDS253202R0579
S203-OV63	2CDS253202R0599
S203-OV25NA	2CDS253202R9519
S203-OV32NA	2CDS253202R9529
S203-OV40NA	2CDS253202R9559
S203-OV50NA	2CDS253202R9579
S203-OV63NA	2CDS253202R9599

© Carried to 2000 ADD, All of the carried						
Approved	Public	ABBG-00112-V01.01-EN	1	en	9/11	
STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	

© Copyright 2022 ABB. All rights reserved.

Registration number:	Drafting Rules:	PCR-ed4-EN-2021 09 06
ABBG-00112-V01.01-EN	Supplemented by:	PSR-0005-ed2-EN-2016 03 29
Verifier accreditation number:	Information and referen	nce documents:
VH48	www.pep-ecopassport.	org
Date of issue: 02-2023	Validity period:	5 years
Independent verification of the declaration and data, in com	pliance with ISO 14025: 20	010
Internal	External	
The PCR review was conducted by a panel of experts chaired Julie ORGELET (DDemain)	l by	PEP
PEP are compliant with XP C08-100-1: 2016 or EN 50693:2019 The elements of the present PEP cannot be compared with e program		PASS PORT

program Document in compliance with ISO 14025: 2010 "Environmental labels and declarations. Type III environmental declarations"

© Copyright 2022 ABB. All rights reserved.

Environmental Impact Indicator Glossary

Impact indicators

Indicator	Description	Unit
Global warming potential (GWP) - total	Indicator of potential global warming caused by emissions to air contributing to the greenhouse effect. The total global warming potential (GWP-total) is the sum of three sub-categories of climate change. GWP-total = GWP-fossil + GWP-biogenic + GWP- land use and land use change	kg CO₂ eq.
Ozone depletion (OD)	Emissions to air that contribute to the destruction of the stratospheric ozone layer	kg CFC-11 eq.
Acidification of soil and water (A)	Acidification of soils and water caused by the release of certain gases to the atmosphere, such as nitrogen oxides and sulphur oxides	H+ eq.
Eutrophication (E)	Indicator of the contribution to eutrophication of water by the enrichment of the aquatic ecosystem with nutritional elements, e.g. industrial or domestic effluents, agriculture, etc. This indicator is divided to three: freshwater, marine and terrestrial.	kg P eq., kg N eq., mole N eq.
Photochemical ozone creation (POCP)	Indicator of emissions of gases that affect the creation of photochemical ozone in the lower atmosphere (smog) because of the rays of the sun.	kg NMVOC eq.
Depletion of abiotic resources – elements (ADPe)	Indicator of the depletion of natural non-fossil resources	kg Sb eq.
Depletion of abiotic resources – fossil fuels (ADPf)	The use of non-renewable fossil resources in an unsustainable way (e.g. from material to waste)	MJ (lower heating value)
Water Deprivation potential (WDP)	Deprivation-weighted water consumption. Assesses the potential of water deprivation, to either humans or ecosystems, building on the assumption that the less water remaining available per area, the more likely another user will be deprived.	m³ e depr.

Resource use indicators

Indicator	Description	Unit
Total use of primary energy	Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) + Total use of renewable primary energy re-sources (primary energy and primary energy resources used as raw materials)	MJ (lower heating value)

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	
Approved	Public	ABBG-00112-V01.01-EN	1	en	11/11	
© Copyright 2022 ABB. All rights reserved.						